tial radical breakthrough more integrally to established traditions—a so-called neoclassical period.

We treasure leaders who are both effective and wise, those who have lived through a great deal, have drawn lessons from their experiences, and know how to use these lessons. Of the various stories at their disposal, they can assemble the one that makes the most sense to the most people in the present moment. They can speak to individuals at the deepest level, and are most likely to speak to a variety of people, including those of different backgrounds and beliefs. Nelson Mandela’s enormous authority in recent years is a tribute to his remarkable ability to communicate across multiple barriers.

A crucial point about wisdom is its modesty, its humility. Neither intelligence nor creativity nor leadership reserves a place for silence, for quiet, for resignation. And morality may also carry a shrillness or an unwarranted self-confidence. Youth, perhaps fortunately, knows no limits. The wise person knows when to say nothing, and when to step down and make room for someone else. The wise adult knows about the frailty of humanity and the difficulty of bringing about enduring changes.

When people hear about multiple intelligences, they sooner or later (usually sooner) ask, “How do you measure the intelligences?” Among policymakers and practitioners, it’s almost a reflex. In fact, within a few years of the publication of *Frames of Mind*, several of the leading testing and publishing companies approached me to develop an instrument to assess intelligences. In many ways, this request was perfectly reasonable. Since I had introduced a collection of new intelligences, at the same time critiquing the standard view of intelligence, I was implying that one could measure intelligences. After all, for most of us in Western society, intelligence is a construct or capacity that can be measured by a set of short questions and answers, presented orally or in writing. Could not the same method be used to assess a new ensemble of intelligences?

Assessment: The First Reflex

On the question of assessment, entrenched habits of thought can become dangerous. Like others influenced by contemporary practices
children would find these materials inviting, that they would interact with them regularly, and that they would reveal to us, by the richness and sophistication of their interactions, their particular array of intelligences. Hence the title “Spectrum.”

After some years of experimentation, Spectrum worked out as we had hoped. We eventually identified materials that appealed not just to us but to children of different ages, inclinations, and social class backgrounds. Most children found it comfortable and inviting to explore the range of materials, and over the course of a year or more, they became more sophisticated with these materials. In cases where children avoided certain materials, we devised “bridging” activities. So, for example, if a child didn’t want to tell stories about a picture, we gave her props and encouraged her to build a diorama. Using the diorama as a bridge, we then asked her to tell us what had happened to the people or animals in the diorama.

Our approach rested on an important principle. Rather than bringing the children to the assessment, as psychometricians have done (often, to be sure, for understandable reasons), we took the assessments to the children. We created an environment with inviting resources and let the children demonstrate their spectra of intelligences in as natural a fashion as possible.

Spectrum was initially used for children aged four to seven, but the approach could be adapted for any age. Indeed, a good measurement of intelligences at any age is provided when someone is parachuted into a new territory. If you were to drop me into three areas of Australia—the outback, the Great Barrier Reef, and a coastal city—and observe me for a day or two in each region, you would learn a great deal about my intelligences—as well as my multiple stupidities!

For most children, unfettered exploration in a Spectrum classroom or in a children’s museum is enough to give a rough-and-ready picture of their intelligences at a given moment in their lives. Nothing more is
needed, and as their intelligences are likely to evolve, it is important not to place too much weight on a single profile obtained at a single moment. For research purposes, or occasionally for clinical purposes, it may be useful to obtain a more targeted description of a child’s profile of intelligences. And in such cases, it is possible to observe children at play (or at work) systematically and to arrive at a quantitative description of their intelligences. We have done such inventories on various occasions and have written about those efforts in books on Project Spectrum.

The Perils of Assessment

One of the unanticipated consequences of any theory is the ways in which it can be abused. There are several batteries of short tests that claim to measure the intelligences, but these tend to be strongly linguistic and often confound an interest in an intelligence with a demonstrated skill in that intelligence. These tests simply multiply by seven or eight the sins of original intelligence tests (or the original sin of intelligence testing).

Another risk in the “assessment mentality” is the tendency to label children (and others) as “linguistic” or “spatial” or “not at all musical” or even “interpersonally challenged.” This is not wholly a bad thing. Children are attracted to the idea of multiple intelligences, which involves fun activities and looks far beyond the idea of a single intelligence. (Here, children are savvier than test givers.) Also, categorical systems provide a way for people to engage in personal reflection, which can be productive.

But the risks of labeling are patent. Labels can be stimulating, but also confining. No one likes to be called “stupid” because of low IQ scores, but the label “spatial but not linguistic” can be debilitating as well. Also, labeling intelligences involves two erroneous assumptions:

1. We know exactly how to assess intelligences, and
2. The determination of an intelligence represents a lasting judgment. If I were asked to assess someone’s intelligences, I would not be satisfied until I had observed him solving problems and fashioning products in a number of settings. This is usually not practical. And even then, I would have no guarantee that the intelligences profile would remain the same a year or two later. Indeed, shifting a person’s daily routine dramatically can alter his or her profile of intelligences: That is what methods like the Suzuki Music Talent Education Program or (less pleasantly) military boot camp achieve. But labels tend to stick, and few people go back later to document a shifting profile of intelligences.

THE RORSCHACH TEST AND BEYOND

The educators who first learned about MI theory created a range of applications. At the Key School in Indianapolis, under the leadership of principal Patricia Bolanos, the teachers wanted to ensure that children had each intelligence stimulated each day and therefore created a rich curriculum. In addition to the staple “three R’s” of the elementary years, every child studied a musical instrument, a foreign language, and physical education. Each day children also visited a “flow room” where they could pursue their own interests—ranging from chess to rocket ships—at their own pace over as many days as they wished. They enrolled in “pods”—interest groups where children of different ages could explore a common interest in greater depth. Pods have included topics like sign language, making money, or staging a play. And at a number of specified times each year, all the students in the school created projects around a common theme—such as patterns or the rain forest—which allowed them to foreground particular intelligences. As the first and probably best known of the so-called MI
schools, the Key School (now called the Key Learning Community) has had wide influence both in the United States and abroad. But that school's approach to multiple intelligences is by no means the only one.

Working in the elementary grades in the Seattle area, classroom teacher Bruce Campbell created a set of learning centers through which students circulate regularly, sometimes daily. These learning centers are physically demarcated regions of the classroom that contain elements and displays designed, respectively, to engage each of the several intelligences. It is not uncommon for children to pursue a particular interest (such as flying kites) or a particular classroom assignment (such as adding fractions, understanding the solar system) across several of these learning centers. In variation of Campbell's approach, some teachers have adapted their standard curriculum so that it can be presented through several intelligences; others have chosen to focus directly on particular intelligences and have sought to reconfigure the curriculum so that it enhances particular intelligences.

Let me mention a few specific innovations that have proved fruitful. In one school, students write about people who exemplify a particular intelligence, then they try to re-create their exemplar's intelligence in a classroom presentation. In another school, the intelligences have become an organizing principle for the after-school program; children have the option to engage in activities designed to nourish and nurture particular intelligences. In still another school, older students teach particular concepts (like the principles that govern the functioning of a lever) to younger students, using a range of intelligences. It is particularly instructive to observe efforts to teach that circumvent the usual linguistic channel and depend instead on pantomime or graphic depiction.

Particular intelligences can also become the focal point for activities. Principal Tom Hoerr and his associates at the New City School in St. Louis have focused on the personal intelligences. They have developed numerous lessons that help students understand their own strengths and weaknesses better, as well as complementary lessons that aid students in understanding and working with others in the school. New York-based master teacher Naaz Hosseni has as her goal the incorporation of bodily-kinesthetic intelligence across the curriculum. And so she attempts to introduce science, social studies, and mathematical concepts through dance, gymnastics, and other bodily activities.

In the hands of educators, MI theory resembles a Rorschach test. When two people look at an inkblot, they may see very different things: One says, "Oh, it's a mother hugging her child," while another says, "Looks like a husband strangling his wife." The difference is not in the inkblot but in the "set" or "predisposition" of the observer. Thus, advocates of MI theory discern their own favored rationales for assessing, designing curricula, and identifying particular strengths or weaknesses—indeed, for approaching a whole gamut of educational problems and possibilities.

At first, I was intrigued by these initial entry points. I spent much time trying to understand why some educators were attracted to one implication of the theory (say, a new mode for describing their students), while others chose to stress another approach (perhaps new ways to teach standard subjects or introduce electives). With time, however, I came to realize that the initial applications were less critical than the sequels stemming from them.

Any new idea or theory must first be assimilated into a preexisting set of assumptions and practices. (Note the similarity to the situation faced by leaders, who must engage the stories already mastered by their audiences). The established approach cannot (and perhaps should not) be changed immediately. Educators may say they are "doing multiple intelligences" when, in fact, they are largely continuing with their earlier practices while beginning to think about them in new ways. There also may be lamentable confusions in the early stages. I once watched a series of videos about multiple intelligences in the schools. In one video
after another I saw youngsters crawling across the floor, with the superimposed legend “Bodily-Kinesthetic Intelligence.” I said, “That is not bodily-kinesthetic intelligence; that is kids crawling across the floor. And I feel like crawling up the wall.” And indeed, the flexing of one’s body is not the enactment of an intelligence; a yawn is just a yawn. We use an intelligence when we actively solve a problem or fashion a product valued in society.

Mindy Kornhaber, my long-time colleague and a thoughtful researcher on multiple intelligences, once quipped, “Multiple intelligences is a way of saying that you are doing something new, so that you don’t really have to do anything new.” This observation may be unduly cynical, but it does convey an important point: Claiming to use MI theory can suggest that one is in tune with the latest educational thinking. But instituting a new practice in any domain is hard work, and the process of bringing about fundamental changes in educational practice takes years.

DEEPER INTO MULTIPLE INTELLIGENCES:
MI THEORY AS A TOOL

A generative question to ask about the introduction of MI ideas and practices in a school is: If one returns to the school three years later, what will one see? Perhaps MI theory will long since have been forgotten. Schools in the United States, in particular, have an unsettling track record of embracing practices for a short period of time and then dropping them. I can already hear the decisive declaration: “Oh, Multiple Intelligences. We used to do that.” Or MI ideas may have become institutionalized without having undergone fundamental change in the interim. For instance, a school might have begun by performing an inventory on each child and continues to carry out such inventories without making use of the information. Or teachers might have assigned the students a project in which they were free to use whatever intelligences they preferred, and this “project practice” has endured. These practices may be beneficial, but applying MI thinking makes the most sense if it brings about deeper, more fundamental changes in the life of the school.

When people tell me, “We have a multiple intelligences school” or “We are using multiple intelligences in our elementary school,” I wonder about the purposes for which they are using these new ideas about the human mind. After all, MI ideas and practices cannot be an end in themselves; they cannot serve as a goal for a school or an educational system. Rather, every educational institution must reflect on its goals, mission, and purposes continuously and, at least at times, explicitly. Only after such reflection can MI ideas be usefully implemented.

In fact, determining one’s educational goals is so important and difficult an endeavor that, paradoxically, most institutions avoid explicitly doing it. They pay lip service to certain ideals—such as having well-rounded children and literate adolescents—and they carry on well-established practices, from conducting spelling bees to dissecting earthworms to assigning a Dickens novel. Their hesitation reflects our underlying fear that, if stated explicitly, each of us might find our own goals to be disparate from those of our fellow citizens.

Let me mention just a few of the educational values on which people are likely to differ, often profoundly: How important is the attainment of creativity? How important are the arts? Should technological proficiency be a high priority? Should schools be involved in religious education, moral education, civic education, health education, and sex education? Is it more important to master a lot of facts or to secure a deeper understanding of a limited number of disciplinary topics? Should one emphasize the more holistic aspects of language use or the drill-focused aspects of reading, writing, and spelling? Is mathematical
problem solving or pattern recognition more important than the mastery of number facts? And, more broadly, do we want students who are well rounded or those who specialize in one or two areas?

One might think that multiple intelligences would appeal only to those who take certain clear-cut positions on these topics. Indeed, those who are partial to the arts also like multiple intelligences, perhaps because musical, bodily-kinesthetic, and other intelligences so readily suggest artistic priorities. Yet, in fact, MI theory could be made consistent—or inconsistent—with a myriad of practices, goals, and values. Let us say, for example, that one is devoted to a curriculum that focuses on the traditional subjects and that features regular tests. At first, this kind of program might seem to clash directly with the spirit of multiple intelligences. But because MI theory stipulates neither what to teach nor how to teach it, one could teach English literature or the theory of mechanics by using a number of different lesson plans or by giving students software that draws on their various intelligences. One could mobilize MI theory for more traditional ends by testing students' understanding of the plot of a Shakespeare play or of the “plot” involved when a spaceship is heading toward the moon.

The point is that there is no direct tie between a scientific theory and a set of educational moves. Whether one believes in one intelligence or twenty, and whether one thinks early experiences are more important than later ones, or the reverse, one is still free to implement any number of educational approaches. Indeed, in an art like teaching, the proof comes down to whether an approach works; it matters little whether the theory was correct. And, conversely, even if the theory is both correct and elegant, if it cannot be mobilized for concrete educational consequences, the theory matters not a whit to the educators.

Let us say that one has in fact identified a set of goals acceptable to the educational community. This is when one can indeed go “deeper into multiple intelligences” and declare: “We now have goals A, B, C,

and D. How can we use this new theory of human mental representation to achieve these goals? And how will we know whether or not we have been successful?” At this point one stops being a visionary and begins to become a strategist. The vision having been stated, one can recommend specific practices, spell out a rationale, and hypothesize why these practices might indeed lead to the desired goal. And, going one step further, one can then begin to lay out criteria that will determine whether a practice inspired by multiple intelligences has led to a desired effect.

Steps for Establishing an MI Environment

There are many ways to proceed from goal to strategy to evaluation, and none is inherently superior. Here are some practices that have been effective in probing deeper into multiple intelligences.

1. **Learn more about MI theory and practices.** There is now a sizeable literature in English, plus a growing amount in other languages (see the appendices). The literature is theoretical and practical, visionary and realistic. There are also videos and CD-ROMs that illustrate MI practices.

2. **Form study groups.** Many people find it most comfortable to explore new ideas with others. A group that meets weekly or biweekly to reflect upon MI-related themes, with a particular eye to the needs of a certain school or of educational institutions in one locale, often makes fairly rapid progress.

3. **Visit institutions that are implementing MI ideas.** Interacting with teachers, staff, parents, and children at an MI site provides invaluable insights, raises questions, and triggers ideas one can implement locally.
4. **Attend conferences that feature MI ideas.** In many countries now, those involved in MI work hold workshops, symposia, and conferences. Project Zero, at the Harvard Graduate School of Education, holds an institute each summer; many graduates return, some serving as mentors to new attendees. At their best, these meetings demonstrate effective practices and introduce outstanding presenters. Even when the actual content of the meetings is less than stellar, one has the opportunity to meet and begin to network with people more than casually interested in MI theory.

5. **Join a network of schools.** There are now explicit MI networks—such as the one coordinated by New City School head Thomas Hoerr for the Association of Supervision and Curriculum Development—that provide up-to-date information and regular access to others devoted to exploring the educational implications of MI theory.

6. **Plan and launch activities, practices, or programs that grow out of immersion in the world of MI theory and approaches.** It is important to be courageous but reasonable and to build in time for reflection. Also, having indices of effectiveness for a new activity will be necessary for determining whether to continue it. Yet, because most experimentation does not work well at first, it is important to be flexible and, as appropriate, either continue for a while, even in the absence of firm results, or change course and rethink the work.

These practices may seem self-evident, but when teachers become interested in MI ideas, they often make unnecessary errors. They try out recommended activities without understanding (and questioning) their rationale; they are too ambitious and then become discouraged when immediate, earth-shaking results do not occur; or, most commonly, they judge success completely on anecdotal evidence and never pose the difficult question of what data might convince a skeptical parent or school board.

I am pleased that my own impressions about the “conditions that are hospitable to MI theory” have recently been reinforced by the findings of Mindy Kornhaber and colleagues on the SUMIT project (see chapter 7). Based on its investigations of forty-one schools, the SUMIT team has identified a set of markers—the Compass Points Practices©—that characterize schools with some proven success in implementing MI-inspired practices:

- **Readiness.** It is important to launch processes that build awareness about the MI ideas and how they might be implemented. Such processes could include a faculty seminar, a parent awareness night, or a visit to other MI schools. This process of building awareness can be lengthy if the school does not already have beliefs and practices that are at least loosely aligned with the themes and spirit of MI.

- **Culture.** MI practices are most likely to emerge in settings that support diverse learners and encourage steady, hard work.

- **Collaboration.** There should be ample opportunities for formal and informal exchanges, both within the school and with others who share experiences and concerns. These exchanges remain crucial once the processes of change have begun, because there are always problems to discuss and decisions to make.

- **Choice.** The school should offer meaningful options for curriculum as well as for assessment of student growth and learning. The options should make sense both to the students and to the wider community. An “MI setting” can be undone if the curriculum is too rigid or if there is but a single form of assessment (which all too often is a short-answer standardized test).
Multiple Intelligences in the Schools

- **Tool.** Multiple intelligences should be used as a means of fostering high-quality student work. In the last analysis, it is the students’ work and their understanding of it that are the hallmarks of good schooling. MI approaches work best when integrally yoked to outcomes that everyone cares about strongly.
- **Arts.** A program rich in the arts should assume a significant role in the school. Otherwise, it will be difficult to address the range of intelligences exhibited by students and teachers.

Even when practices work, especially in the United States, justifying new practices is a political imperative. Since most schooling is supported by public funding, and private schooling relies on parental buy-ins, it is necessary to convince others that what one has undertaken is in fact worthwhile. Occasionally, a program has so obviously succeeded—or failed—that a keen political sense is not needed. In most cases, however, continuation of a program rests on proof of its superiority, as compared to competing programs. Justification, in turn, requires persuasive speaking, writing, and aggregation of data—but skill at persuasion is not intimately tied to skill at implementing a program. Sometimes, programs that are shoddy or that have little evidence in their favor continue because they have been eloquently defended. Some critics charge that this is what has happened in the United States with such long-running, mandated programs as Head Start, Chapter I bilingual education, and Chapter I funding for disadvantaged students. Conversely, even well-executed, clearly effective programs are sometimes abandoned because their advocates do not know how to make a strong case for them.

From my observations of community organizers like Ernesto Cortes, Jr., head of the Alliance Schools Network in Texas, I have learned much about what it takes to convince others of a program’s viability. One has to be very precise about how the program works: its goals, the signs that it is working—“hard” (test scores) and “soft” (parental support), and the signs that it could be working even better. It is important to make the case cogently and concisely and to respond persuasively, though not defensively, when the program is criticized. Any new program will be challenged by those interests that feel threatened by the competition.

MI theory has become well enough known that it has been critiqued from nearly every political and pedagogical point of view. It has been disparaged as multicultural (because it is open to different learning approaches) and as racist and elitist (because it uses the word *intelligence* and because I, as its original proponent, happen to be affiliated with Harvard University). It has been seen as too flexible and loose (because it countenances activities in the arts) and as too rigid (because it holds that everything should be taught in varied ways). It has been seen as against standards and as imposing too many standards.

In any context, one needs to know what the most likely criticisms are going to be, and one has to have reasonable answers. One need not seize the defensive; indeed, one should listen carefully to criticisms, see where they may be on the mark, and attempt to learn from them. Yet, it is important to be prepared to draw a firm chalk line on the floor of the school auditorium. Some criticism is legitimate; some is based on reasonable uncertainty or ignorance. Some criticism, however, represents a mean-spirited determination to destroy MI efforts, no matter what the facts. Once one has given critics the benefit of the doubt, while they have steadfastly refused to reciprocate, then the time for charity is at an end. One must be prepared not only to emphasize the facts in the matter but also to unmask motives and hidden agendas (which might be to destroy public education, to favor an already entrenched elite, to eliminate the arts, or to discourage individual expression or initiative). At least, then, the contest will again become a fair one.
INDIVIDUALLY CONFIGURED EDUCATION: THE KEY EDUCATIONAL IMPERATIVE OF MULTIPLE INTELLIGENCES

As I have made clear, almost any number of educational programs can be crafted in the shadow of MI theory. However, there is one form of education that is antagonistic in spirit to MI—the uniform school. Unfortunately, throughout human history, the schooling of choice has been uniform, and so it is necessary to understand its power as well as its fundamental flaws.

The essence of uniform schooling is the belief that every individual should be treated in the same way: study the same subjects in the same way and be assessed in the same way. At first, this seems fair: No one has special advantages. And yet, a moment’s thought reveals the essential inequity in the uniform school. The uniform school is based on the assumption that all individuals are the same and, therefore, that uniform schooling reaches all individuals equally and equitably. But we obviously look different from one another and have different personalities and temperaments. Most important, we also have different kinds of minds. Indeed, if we follow the line of reasoning in this book, no two people have exactly the same kinds of minds, since we each assemble our intelligences in unique configurations.

As educators, we face a stark choice: ignore these differences or acknowledge them. Sometimes, they are ignored out of ignorance; sometimes they are ignored because educators are either frustrated by the differences, or convinced that individuals are more likely to become members of a community if they can learn to be more alike. But those who ignore the differences are not being fair—and are typically focusing only on the language-logic mind (as perhaps most perfectly embodied in the mind of the law professor). To the extent that the student and the teacher share that focus, the student will do well and consider herself smart. But if the student has a fundamentally different kind of mind, she is likely to feel stupid—at least while attending that school.

What is the alternative? One possibility is individually configured education—an education that takes individual differences seriously and, insofar as possible, crafts practices that serve different kinds of minds equally well. Because it is not an educational goal in the sense I have been discussing, individually configured education can fit comfortably with a variety of goals: a traditional or experimental curriculum, an education aimed at breadth or depth, an education that seeks to develop liberal arts sensitivity, or an education oriented to the world of practice, vocations, or civic-mindedness. The crucial ingredient is a commitment to knowing the minds—the persons—of individual students. This means learning about each student’s background, strengths, interests, preferences, anxieties, experiences, and goals, not to stereotype or to preordain but rather to ensure that educational decisions are made on the basis of an up-to-date profile of the student.

It is not necessary to move directly from this goal to a formal assessment of intelligence. Whatever their philosophies, good teachers, tutors, and coaches have always sought to know their students well. And these pedagogues have rarely used formal instruments to identify individuating features; they have observed, reflected, and spoken to the students and those close to them. The theory of multiple intelligences can be helpful because, as Mindy Kornhaber has pointed out, it is a good initial organizer. If one wants to know students well, it is helpful to have a set of categories by which one can describe their strengths and weaknesses, bearing in mind my cautions about labeling. One needs to go well beyond the eight intelligences, because they represent, at most, a first cut. And one must be prepared to update the descriptions regularly, because, happily, the minds of students—and, indeed, even the minds of their elders—are subject to change.
Knowing the minds of students represents but the first step. Crucial, thereafter, is an effort to draw on this knowledge in making decisions about curriculum, pedagogy, and assessment. Of course, if one chooses to have a curriculum rich in electives (or choices), then the role of MI ideas becomes clear. One can designate subjects (disciplines), teaching methods, hardware, software, and means of assessment that honor the particular cluster of intelligences of students under one's charge. But individually configured education is also compatible with a required standard curriculum. All young people should study the history of their country, the principles of algebra and geometry, and basic laws that govern living and nonliving objects. A commitment to some common knowledge does not mean that everyone must study these things in the same way and be assessed in the same way.

MI theory makes its most important contribution to education on this point. The theory stimulates teachers and students to be imaginative in selecting curricula, deciding how the curricula are to be taught or “delivered,” and determining how student knowledge is to be demonstrated. Sometimes, all students will be exposed to a variety of curricula or assessments. At other times, certain students will learn and be assessed in one way, while other students—or even an individual student—will be instructed and assessed in other, more appropriate ways. These practices have been routine in some endeavors: for example, individual arts or sports coaching, academic tutoring, and “special education” for students with learning problems or disabilities. These students typically have difficulty mastering a subject, such as reading or mathematics, because they cannot learn in the “uniform way” available in their schools. The only choices are to give up, assuming that the students are ineducable, or to teach in another way. As we would now put it, the learning specialist must mobilize the students' spared intelligences so that they can learn, and can demonstrate that learning in ways that make sense to them.

Even those sympathetic to individually configured education doubt that it can be mobilized on a wide scale. This vision may be right, they say, but it can be provided only to those who are wealthy or to those who qualify for special government-funded programs. (Indeed, in my community, some parents seek out a “learning-disabled” label just so their children can qualify for tutoring.) It may be hard to think of individually configured education in a classroom with thirty or more students, not all of them as docile or motivated as one might like, but it is not impossible. Among the possible strategies are the following:

- Cull as much data as possible about how a particular child learns and share that knowledge with the teacher and with the child. As children get older, they can provide much information and feedback themselves.
- Allow students to remain with the same teacher(s) for several years, so that they can get to know one another very well.
- Assign teachers and students flexibly, so that more compatible matches can be made.
- Have an effective information-transmission system in the schools, so that the next year's teachers know as much as possible about their new students. Also, make sure that the teachers have ready access to this information and can update it as needed.
- Have older students work with younger students, or have students with compatible or complementary learning approaches work together.

One fact will make individually configured education a reality in my lifetime: the ready availability of new and flexible technologies. Already, it is possible to use technology to vary the presentation of important materials—from physics lessons to musical composition.
Such technology can also be “smart.” It can adjust on the bases of earlier learning experiences, ensuring that a student receives lessons that are optimally and individually crafted.

Once parents learn that there are indeed several ways to teach most topics and most subjects, affluent families will acquire the materials for home use. And pressures will mount for schools and teachers to have available, say, the “Eight Roads to Pythagoras” or the “Eight Paths to Plato.” No more will teachers say, “I taught it well, and she could not learn it.” Rather, all involved in education will be motivated to find the ways that will work for this student learning this topic, and the results will be widely available in planning for future work.

One critique of this approach should not be ignored: the apparent success of uniform schooling in some societies. Some of the most effective societies, such as those in East Asia, embrace uniform-schooling methods, and they sometimes get results far more impressive than those achieved in seemingly more progressive Western societies. I do not want to belittle the East Asian achievements, which I respect. Nor do I want to offer the usual defenses: Those societies are more authoritarian, less interested in creativity and flexibility, have a more homogeneous population, and may even have genetic or neural structures that differ from those of other cultures. Instead, I want to suggest that such educational approaches may actually be more individualized than we believe they are. Consider the fact that the first years of education in countries like Japan are spent developing social understanding and students’ capacity to work well together. Much of the work is done in groups, in which students are encouraged to help one another and to take seriously the other children’s ways of learning. Most important, however, are the institutions auxiliary to school. Precisely because the socializing aspects of school are so important in East Asia, the society makes sure that cognitive aspects are not neglected. And so, in Japan, many students go to after-school tutoring, where the lessons are as individualized as needed. And nearly every student has at least one tutor—the parent, most often the mother. Since this tutor has but one goal—the preparation of her child for the decisive examinations—the education can become as individually configured as necessary.

I have sought to indicate how MI ideas can be introduced into a school community and how they can be put to work for the general purpose of providing a good education. I have also tipped my hand as to the centrality of individually configured education. And yet, in the absence of clearly stated goals, the foregoing discussion retains a generic quality. Indeed, so many of the recommendations about how to teach to the multiple intelligences, while well intended, are essentially vacuous, because they are provided without context. Therefore, in the next chapter, I put my cards on the table about a very specific goal: an education for understanding. Then I seek to show how an education informed by MI thinking can achieve that goal.